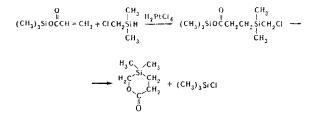
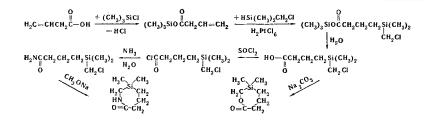
4-SILALACTONES AND 4-SILALACTAMS

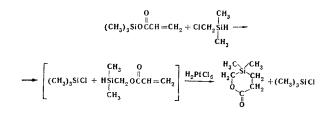

V. F. Mironov, N. S. Fedotov, and V. L. Kozlikov

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 5, No. 2, pp. 221-225, 1969


UDC 547.892+547.79'128

A general method for the preparation of organosilicon lactones and lactams in which a silicon atom attached to two carbon atoms is present in the β -position to the heteroatom O or N has been developed. A new reaction with acyloxysilanes has been observed for a number of silicon compounds containing a chloromethyl radical, which consists in the replacement of the chlorine by the acyl radical.

In a preliminary communication [1], we recently described a method for preparing six-membered silalactones and silalactams starting from methacrylic acid. It has also proved suitable for the synthesis of seven-membered silalactones and silalactams starting from vinylacetic acid:



However, whatever may be the route for the formation of this silalactone, it includes the previously unknown reaction of the displacement of $(CH_3)_3SiCl$ from the trimethylsilyl ester of the corresponding

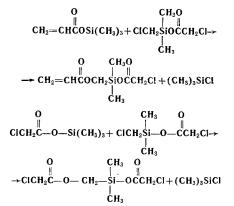
In all the stages of this scheme except the last, the reactions with vinylacetic acid derivatives, like those with methacrylic acid derivatives, take place readily and with high yields.

However, in the cyclization stage, the seven-membered 4-silalactone, unlike the six-membered compound, is formed in low yield (21%). This is due to the fact that under the reaction conditions the partial dimerization and polymerization of the silalactone takes place. At the same time, the seven-membered silalactam is formed in good yield (70%). When acrylic acid was used in the scheme given above, in the first stage a reaction unexpectedly took place which led directly to the formation of a six-membered 3silalactone.

Since when this reaction was carried out in the absence of Speier's catalyst the bulk of the starting materials was recovered and $(CH_3)_3SiCl$ and $H(CH_3)_2SiCH_2O_2CCH=CH_2$ were formed in very small amounts, the synthesis of the 4-silalactones may also take place by a different route. acid with cleavage of the C-Cl bond in the α -chloro-

methylsilane and formation of the

grouping. This reaction somewhat resembles the transsilulation reaction which we recently observed for silul ethers and esters [2, 3].


$$R_3SiOR' + ClSiR_3'' \Rightarrow R_3SiCl + R'OSiR_3''$$

⇒SiCH₂O—Ö

where R' = alkyl or RCO.

However, while the transsilulation reaction takes place with the cleavage of the Si-Cl bond and is reversible, the new reaction takes place with the participation of the C-Cl bond and is probably irreversible.

We have also observed other examples of the occurrence of this reaction:

The latter reaction also takes place with other starting materials.

In this case, a reaction first takes place at the Si-Cl bond and then at the C-Cl bond. However, the replacement in the last two schemes of the second component by $ClCH_2Si(CH_3)_3$ or by $ClCH_2Si(CH_3)_2H$, and of

$$\begin{array}{ccc} O & O \\ \parallel \\ ClCH_2C - O - Si(CH_3)_3 & by CH_3C - O - Si(CH_3)_3, under$$

otherwise the same conditions, is accompanied by no reaction of any kind. Likewise, there is no reaction between $(CH_3)_3SiO_2CC_2H_5$ and $ClCH_2Si(CH_3)_2O_2CC_2H_5$.

Thus, while the transsilulation reaction is a general one, the possibility of the occurrence of the new reaction depends strongly on the structure of the features of the starting materials.

In conclusion, so far as concerns the properties of the lactones, it must be noted that the six-membered lactone obtained from acrylic acid, in contrast to the lactone synthesized from methacrylic acid, is capable of dimerizing on standing. This capacity for dimerizing is shown by the seven-membered lactone to an even greater extent.

EXPERIMENTAL

A description of the synthesis of six-membered silalactones from methacrylic acid has been published previously [1]. The spectra of these compounds and those described below are given in Figs. 1 and 2.

Trimethylsilyl γ-(chloromethyldimethylsilyl)butyrate ClCH₂(CH₂)₂Si(CH₂)₃COOSi(CH₃)₅ (I). Over 2 hr, 26 g (0.16 mole) of (CH₃)₃SiO₂CCH₂CH=CH₂ was added to a boiling mixture of 18 g (0.16 mole) of ClCH₂(CH₃)₂SiH and 0.2 ml of a 0.1 M solution of H₂PtCl₆ in isopropanol. The temperature of the reaction mixture rose to 160° C. Vacuum distillation yielded 35.5 g (81%) of I with bp 81-82° C (1 mm); n_D^{20} 1.4451; d_2^{40} 0.9777. Found, %: C 45.37, 45.32; H 8.56, 8.72; Si 21.02, 21.01; Cl 13.23, 13.36; MR_D 72.81. Calculated for C₁₁₀ H₂₃ Si₂O₂Cl, %: C 44.98; H 8.68; Si 21.04; Cl 13.29; MR_D 73.24.

 γ -(Chloromethyldimethylsilyl)butyric acid ClCH₂(CH₃)₂Si(CH₂)₃-COOH (II). A mixture of 44 g (0.16 mole) of I and 50 ml of water was stirred vigorously with heating to 60° C for 2 hr. The organic layer was separated off, dried, and distilled in vacuum to give 30.7 g (95.6%) of II with bp 116-117° C (1 mm); n²⁰_D 1.4629; d²⁰₂ 1.0646. Found, %: C 42.89, 43.34; H 7.85, 7.61; Si 14.42, 14.50; Cl 18.02, 18.28; MR_D 50.6. Calculated for C₇H₁₅SiO₂Cl, %: C 43.16; H 7.76; Si 14.42; Cl 18.23; MR_D 50.38.

Si, Si-Dimethyl-4-silacaprolactone $(CH_3)_2Si-(CH_2)_3-C=0$ (III).

A mixture of 33 g (0.17 mole) of II and 21 g of finely ground calcined sodium carbonate was heated for 1 hr, cooled, and extracted with ether. The ether was driven off from the extracts and the residue was distilled in vacuum. The yield of III was 5.7 g (21.2%). Bp $82-84^{\circ}$ C (2 mm); n_{20}^{20} 1.4728; d_{20}^{20} 1.0238. Found, %: C 52.85, 52.94; H 9.00, 8.89; Si 17.48, 17.91; MR_D 43.30. Calculated for C₇H₁₄SiO₂, %: C 53.13; H 8.92; Si 17.70; MR_D 43.83.

We also obtained 2 g (7.5%) of dimer III with bp $160-162^{\circ}$ C (2.5 mm), solidifying in the receiver into a colorless crystalline mass; mp 96-97°C. Found, %: C 53.18, 53.14; H 8.95, 8.79, Si 18.02, 18.16, mol. wt. 274. Calculated for $C_{14}H_{28}Si_2O_2$, %: C 53.13; H 8.91; Si 17.70; mol. wt. 316.53.

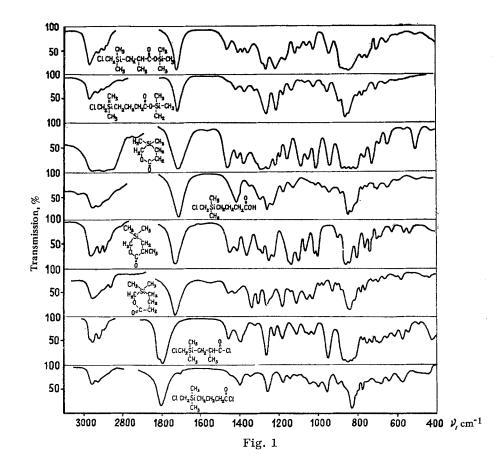
γ-(Chloromethyldimethylsilyl)butyroyl chloride ClCH₂(CH₃)₂-Si(CH₂)₃COCl (IV). A mixture of 8 g (0.04 mole) of II and 4.9 g (0.04 mole) of thionyl chloride was heated in the water bath for 1 hr and then distilled in vacuum. This gave 8.3 g (94%) of IV with bp 99–100°C (4 mm); n_{20}^{20} 1.4700; d_{4}^{20} 1.0971. Found, %: C 39.84, 39.52; H 6.67, 7.04; Si 12.89; Cl 33.05; 32.86; MR_D 53.77. Calculated for C₇H₁₄SiCl₂O, %: C 39.42; H 6.61; Si 13.17; Cl 33.29; MR_D 54.28.

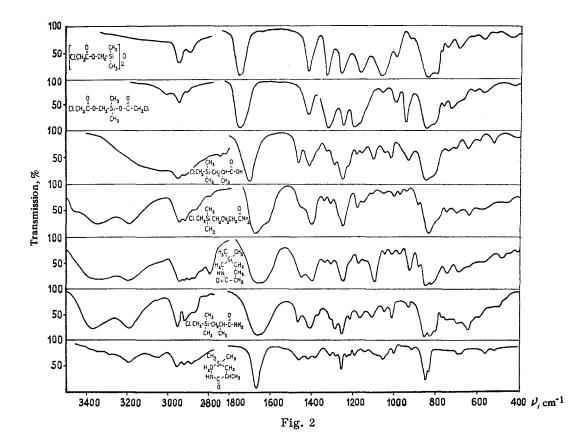
 γ -(Chloromethyldimethylsilyl)butyramide ClCH₂(CH₂)₂Si(CH₂)₃-CONH₂ (V). Over 1 hr, 53 g (0.25 mole) of IV was added to 500 ml of a saturated aqueous solution of ammonia. The yield of V was 34.25 g (71%), bp 146-148°C (2 mm). Colorless liquid crystallizing on standing (mp 26-27°C). Found, %: C 43.16, 43.20; H 8.11, 8.35; Si 14.33, 14.03; Cl 17.71, 17.70. Calculated for C₇H₁₆SiONCl, %: C 43.39; H 8.32; Si 14.49; Cl 18.3.

Si, Si-Dimethyl-4-silacaprolactam $(CH_3)_2Si-(CH_2)_3-C=0$ (VI). $\begin{vmatrix} & & \\ & & \\ & & \\ & & \\ & & CH_2-\dots-NH \end{vmatrix}$

A solution of 2.06 g of sodium methoxide in 10 ml of absolute methanol was added to 7.4 g of V. The reaction mixture was boiled for 2 hr. The precipitate of sodium chloride that separated out was filtered off, and the methanol was distilled off from the filtrate. Vacuum distillation of the residue yielded 4.07 g (70%) of VI with bp 134-138°C (2 mm); n_D^{20} 1.4761; d_2^{20} 0.9938. Found, %: C 52.90, 52.90; H 10.09, 10.03; N 7.99, 8.00; MR_D 44.77. Calculated for C₇H₁₅SiNO, %: C 53.45; H 9.61; Si 17.85; N 8.9; MR_D 45.55.

Si, Si-Dimethyl-4-silavalerolactone $(CH_3)_2Si-(CH_2)_2-C=0$ (VII).


Over 1 hr 30 min, 27 g (0.05 mole) of $(CH_{3})_3SiO_2CCH=CH_2$ was added to a boiling mixture of 21 g (0.05 mole) of $CICH_2(CH_3)_2SiH$ and 0.2 ml of a 0.1 M solution of H_2PtCl_6 in isopropanol. The temperature of the reaction mixture first rose to 120°C and then fell to 110°C. It was boiled at 110°C for another 2 hr and was then distilled in vacuum. The yield of VII was 10 g (50%). Bp 66-68°C (3 mm); n_{20}^{20} 1.4555; d_{24}^{20} 1.0157. (The substance was subjected to additional purification by redistillation over a small amount of Na₂CO₃.) Found, %: C 49.77, 50.16; H 8.28, 8.49; Si 19.91, 19.69; MR_D 38.5. Calculated for $C_6 H_{12}SiO_2$, %: C 49.99; H 8.39; Si 19.48; MR_D 39.20.


The substance obtained dimerized on standing (mp 76-77.5°C; mol. wt. 288.28, found mol. wt. 313.32). A 9.6-g quantity (48%) of (CH₃)₃SiCl condensed in a trap. We also obtained 11.6 g of a fraction with bp 85-104°C (3 mm), probably containing ClCH₂Si(CH₃)₂CH₂-CH₂COOSi(CH₃)₃ and a small amount of the lactone. Found, %: Cl 12.2, 12.3. Calculated for C₉H₂₁Si₂O₂Cl, %: Cl 14.05.

Chloroacetoxy(chloroacetoxymethyl)dimethylsilane-ClCH₂-COOCH₂(CH₃)₂SiO₂CCH₂CL (VIII). a) A 250-ml Claisen flask was charged with 100.4 g (0.7 mole) of ClCH₂Si(CH₃)₂Cl and 115 g (0.7 mole) of (CH₃)₃SiO₂CCH₂Cl. On boiling, 67.6 g (91%) of (CH₃)₃SiCl distilled off from the reaction mixture over 4 hr. Vacuum distillation of the residue yielded: 1) 76 g (54%) of ClCH₂(CH₃)₂SiO₂-CCH₂Cl with bp 109° C (6 mm); n_D^{20} 1.4549; d_2^{20} 1.2103. Found, %: C 29.69, 29.38; H 5.10, 4.87; Si 14.08, Cl 35.45; MR_D 45.29. Calculated for C₅H₁₀SiO₂Cl₂, %: C 29.58; H 5.03; Si 13.95; Cl 35.25; MR_D 45.07. 2) A 39.2 g quantity (22.2%) of **VIII** with bp 129° C (1 mm), n_D^{20} 1.4650; d_2^{20} 1.2844. Found, %: C 32.12, 32.21; H 4.66, 4.77; Si 10.63, Cl 27.23, 27.13; MR_D 55.83. Calculated for C₇ H₁₂SiO₄Cl₂, %: C 32.45; H 4.63; Si 10.83; Cl 27.37; MR_D 56.33.

b) Under the conditions of the preceding experiment, when 8.5 g (0.05 mole) of (CH₃)₃SiO₂CCH₂Cl and 10 g (0.05 mole) of ClCH₂-(CH₃)₂SiO₂CCH₂Cl were boiled, 4.4 g of (CH₃)₃SiCl and 9.2 g (79.5%) of VIII with bp 129°C (1 mm), n_D^{2D} 1.4642, were obtained.

1, 2-Bis(chloroacetoxymethyl)tetramethyldisiloxane [CICH₂-COOCH₂Si(CH₂)₂]₂O (IX). Hydrolysis of VIII. A mixture of 29.7 g

CHEMISTRY OF HETEROCYCLIC COMPOUNDS

(0.116 mole) of **VIII** and 50 ml of water was stirred vigorously with heating to 80° C for 2 hr. The organic layer was separated off, dried, and distilled in vacuum to give 15.2 g (75%) of IX with bp 132.5-133° C (1 mm); n_D^{20} 1.4549, d_4^{20} 1.1764. Found, %: C 34.65, 34.67; H 5.71, 5.79; Si 16.50; Cl 20.7, 20.6; MR_D 79.60. Calculated for C₁₀H₂₀ Si₂O₅Cl₂, %: C 34.58; H 5.80; Si 16.17; Cl 20.44; MR_D 79.65. The aqueous layer yielded 5.3 g of chloroacetic acid with mp 56° C.

REFERENCES

1. V. F. Mironov and N. S. Fedotov, KhGS [Chemistry of Heterocyclic Compounds], 2, 453, 1966. 2. V. F. Mironov and N. S. Fedotov, KhGS [Chemistry of Heterocyclic Compounds], 3, 179, 1967.

3. V. F. Mironov, N. S. Fedotov, and V. L. Kozlikov, KhGS [Chemistry of Heterocyclic Compounds], 4, 354, 1968.

6 December 1966 State Scientific-Research Institute for the Chemistry and Technology of Heteroorganic Compounds, Moscow